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Résumé

Cours avec Sandrine Mouysset, trop bien ! ! !

1 Les données

1.1 Formation d’une image

L’ACP est un bon outil mais est clairement
un outil de méthode descriptive.

rayon lumineux

lentilleluminance

1.2 Des données vectorielles aux don-
nées fonctionnelles
luminance

domaines
fonctionnels

Ici les ensembles de données considérées re-
groupent des individus qui ne sont pas des vecteur
de Rp mais qui sont des fonctions. Ces fonctions
dépendent d’un indice(le temps, l’espace le plus
souvent) évoluant dans un intervalle de valeurs
[a, b] de R.

En pratique, les fonctions sont observées en
des temps de discrétisation qui peuvent être équi-
réparties (ou non), identiques (ou non) pour
chaque individu.

Pour rendre les caractère fonctionnel à des
données discrétisées, on peut :

– interpoler (Lagrange, Hermite, etc.) ;
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– lisser (B-spline, etc.) ;
– approcher (Bézier, etc.) ;
– décomposer (Fourier, ondelettes, etc.).

Une interpolation

Le prolongement des données discrétisées dans
des espaces fonctionnels est particulièrement inté-
ressant dans 2 situations :

– lorsque les fonctions (ou les courbes) sont
très régulières ;
→Les méthodes de décomposition per-
mettent la réduction de dimension

– lorsque les données sont bruitées.
→Un débruitage peut être réalisé par lis-
sage, par seuillage

image numérique

13

codé en 8 bits

ligne L

luminosité échantillonnée

...
...

Indicateur Xi p variables Xi ∈ Rp
...

...
↓

t ∈ [a, b]
...

2 Produit scalaire

La difficulté majeure pour rendre leur carac-
tère fonctionnel aux observations discrétisées est
le passage

– des espaces de données vectorielles de di-
mension finie

– aux espaces de données fonctionnelles de di-
mension infinie

Il faut en particulier généraliser les mécanismes
de décomposition (de projection) et redéfinir le
produit scalaire.

Signal numérique
à analyser

Vecteur de Rn

unitaire

10
7 8

13
11

5

X1 Xp

u1 u2 up

a b

a b

u

élément de base
unitaire

f ∈ C²([a, b]) 

Vecteurs des produits Coefficient = aire
terme à terme sous f(t)u(t)

(X|u) =
∑p
i=1X

iui (f |u) =
∫ b
a f(t)u(t)dt

a b

f(t)Xu(t)

7
6

Rp
L2([a, b])

i

deux espaces de Hilbert

Dimension finie :
Exemple : Rp

base orthonormée ui1...uip
(ui|ui) = 1
(ui|uj) = 0 si i 6= j

⇔ vecteurs propres de l’ACP
f =

∑p
i=1(f |ui) · ui

Dimension infinie
Exemple : L2([a, b])

Famille dénombrable génératrice de vecteurs
orthonormés uii∈N

Base hilbertienne
f =

∑
i∈N(f |ui)ui

= lim
n→∞

∑n
i=1(f |ui)ui

Exemple : Mécanisme d’approximation : on
tronque la série

3 DCT : Tranformation en cosi-
nus discret

La DCT exprime une suite de nombreux
points en termes de somme de fonctions cosinus
oscillan à différentes fréquences

DCT : Xk =
∑N−1
n=0 xn cos(π/N(n+ 1/2)k)

→ Utilisée dans les compressions d’image
jpeg, mjpeg, mpeg.
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noir

blanc

k = 0 k = 1 k = 2 k = 3

Une image est décomposée en vignette de 8×8
pixels. Chaque étape de gauche à droite et de haut
en bas est une augmentation de séquence par 1/2
cycle.

La donnée source (8 × 8) est transformée en
une combinaison linéaire des 64 carrés de fré-
quence.

Le premier carré correspond au niveau de gris
moyen.

Le calcul des coefficients dans cette base se fait
par produit scalaire.

4 Séries de Fourier

4.1 Rappels

Idée : Une fonction périodique C1
pm peut

être décomposée comme une somme de sinu-
soïdes (sinus et cosinus) de différentes fréquences.
Préalable : On peut rendre une fonction
f : [a, b]→ R 1-périodique facilement.

f(t)

contraction

f~(y)

t = (b-a)y+a

dilatation translation

y = (t-a)/(b-a)

a b

0 1

s

t

y

4.2 Bases Hilbertiennes, série de Fou-
rier

La famille (1,
√

2cos(2πx),
√

2sin(2πx), . . . ,√
2cos(2πnx),

√
2sin(2πnx), . . . ) est une base Hil-

bertienne de L2
p([0, 1]) On peut donc écrire pour

toute fonction f ∈ L2
p([0, 1]) dans cette base :

f =
∑
k∈N

(f |Φk)Φk

d’où f(t) =
∫ 1

0 f(u) · 1du
+
∑
n∈N∗[

√
2
∫ 1

0 f(u) cos(2πnu)du]
√

2cos(2πnt)
+ [
√

2
∫ 1

0 f(u) sin(2πnu)du]
√

2sin(2πnt)
f(t) = a0/2 +

∑
n≥1[an cos(2πnt) +

bn sin(2πnt)]

avec{
an = 2

∫ 1
0 f(u) cos(2πnu)du

bn = 2
∫ 1

0 f(u) sin(2πnu)du
Les coefficients de la série de Fourier an et bn

décomposent / analysent la donnée fonctionnelle
uniquement fréquentiellement.

L’information temporelle semble être cachée.
Où est l’information sur le temps ? Dans le déca-
lage des sinusoïdes (c’est à dire les phases).

(ak, bk)

b

a

Amplitude :
√
a2
k + b2

k

Phase : θk angle, avec cos θk = ak√
a2
k

+b2
k

et

sin θk = bk√
a2
k

+b2
k

Terme de reconstruction :
ak cos(2πkt)+bk sin(2πkt) =

√
a2
k + b2

k cos(2πkt−
θk)

4.3 Base complexe

En remplaçant les cos(iπnt) par e2iπnt+e−2iπnt

2
et les sin(iπnt) par e2iπnt−e−2iπnt

2i , on a :
f(t) = a0

2 +
∑∞
k=1

[ak....
?
]

f(t) = a0
2
∑
ak cos(2πkt)︸ ︷︷ ︸

e2iπkt+e−2iπkt
2

+bk sin(2πkt)︸ ︷︷ ︸
e2iπkt−e−2iπkt

2i

D’où f(t) = a0
2 +

∑
n∈ZCne

2iπnt

avec Cn =
∫
f(u)e−2iπnudu→ fréquence n.

Les cn sont les coefficients de Fourier com-
plexes.

On peut afficher leur module « spectre d’am-
plitude »ou leur spectre de phase.

|cn|

n

10-1-2 2
-hi hi

4.4 Comment calculer une série de
Fourier d’une fonction ?

f(t) =
∑
n∈ZCn(t)e2iπnt à partir de la trans-

formée de Fourier de f̃ (plongement nul à support
compact).

ˆ̃f(λ) =
∫
R f̃(λ)e−2iπλtdt
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cn = ˆ̃f(n) avec n une fréquence entière.

4.5 Des données spectrales aux valeurs
discrètes

On va approcher numériquement les coeffi-
cients de Fourier.

discrétisation,
échantillonage

avec un pas de 1/N
1

f(1)f((N-1)/N)

1/N0
(N-1)/N

(N-2)/N2/N

f(1/N)

f(0)

cn =
∫ 1

0 f(x)e−2iπnxdx ≈ 1
N

∑N−1
j=0 f( jN e

−2iπn j
N =

cNn . C’est la TFD (Transformée de Fourier Dis-
crète)

On restreint ainsi le nombre de coefficients.⇒
algorithme FFT (Fast Fourier Transform)

5 Analyse par ondelettes
Somme de Fourier / Transformée de Fourier

→ analyse purement fréquentielle.
Pour rajouter une analyse temporelle, la

Transformation de Fourier par fenêtre (glissante)
a été définie. Elle permet de localiser simulta-
nément en temps et en fréquence un signal en
l’observant sur une fenêtre que l’on translate. →
transformée de Gabon.

Problème : Tout signal plus court que le
support de la fenêtre est sous-localisé dans le
temps. → obtention d’une réponse localisée dans
le temps, implique l’introduction d’une échelle de
grandeurs dans l’analyse (taille de la fenêtre). →
transformation en ondelettes.

Idée : établir un compromis entre temps et fré-
quence. Si on utilise un signal de base analysant

– assez bien localisé temporellement
– assez bien localisé fréquentiellement
– dont le spectre d’amplitude est bien localisé
Ondelettes : petites vagues oscillant à un en-

droit donné approximativement, oscillant à une
fréquence donnée approximativement.

5.1 Base intuitive

ψjk

temps

fréquence

contraction translation

où f =
∑
j

∑
k(f/ψjk)ψjk avec j la fréquence

et k le temps.
ψjk =
2j/2︸︷︷︸

normalisation

ψ︸︷︷︸
ondelette

( 2j︸︷︷︸
contraction

x− k︸︷︷︸
translation

).

k = 0 

j = 0

k = 1 k = 2

j = 1

j = 2

1

√2

2

1 1 2 2 3

1/2 1/2 1 1 3/2

1/4 1/4 1/2 1/2 3/4

5.2 Analyse multirésolution

0 1 2 3 4
1/2 3/2 5/2 7/2

Niveau grossier de résolution :{
approximant de niveau 0
fonction escalier de valeurs f(−1), f(0), f(1)...

Niveau plus fin de résolution (deux fois plus
fin) :

approximant de niveau 1
fonction escalier de valeurs :
f(−1), f(−1/2), f(0), f(1/2)...

Soient vj le sous-espace de fonctions en esca-
lier sur la grille de finesse 2−j . La suite de sous-
espace est une Analyse Multirésolution (AMR).

Propriétés :
– Seule la fonction nulle appartient à tous les
vj : ∩jvj = {0}.

– L’approximation à une échelle donnée
contient toute l’information contenue aux
résolutions plus grossières : v0 ⊂ v1 ⊂ v2...

– On peut approcher avec une précision arbi-
traire n’importe quelle fonction : lim

i→∞
vi =

L2(R).
– On a aussi :
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f ∈ v0 ↔ f(x − k) ∈ v0,∀k ∈ Z (translatée
de k)
f ∈ vi ↔ f(2x) ∈ vi−1 (contractée de 2)

Notons V1 = V0 ⊕W0 avec W0 l’espace de
détails qu’il faut rajouter à un approximant
de niveau 0 (v0) pour passer à un approxi-
mant de niveau 1. De même Vj+1 = Vj⊕Wj .

– ψ l’ondelette mère choisie telle que {ψ(x −
k)}k∈Z forme une base hilbertienne de W0
et ψjk = 2j/2ψ(2j − k) forme une base hil-
bertienne de Wj .

– On sait aussi choisir une fonction φ (fonc-
tion d’échelle ou ondelette père) dont les
translatées forment une base hilbertienne de
V0.

Fonctions Espaces Bases j augmente j diminue
Approximation fonction échelle φ Vj {φjk}jk plus fin plus grossier

Détail ondelettes ψ Wj {ψjk}jk
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