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Résumé

Cours avec Sandrine Mouysset, trop bien!!!

1 Les données

1.1 Formation d’une image

L’ACP est un bon outil mais est clairement
un outil de méthode descriptive.
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1.2 Des données vectorielles aux don-
nées fonctionnelles
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Ici les ensembles de données considérées re-
groupent des individus qui ne sont pas des vecteur
de RP mais qui sont des fonctions. Ces fonctions
dépendent d’un indice(le temps, l'espace le plus
souvent) évoluant dans un intervalle de valeurs
[a,b] de R.

En pratique, les fonctions sont observées en
des temps de discrétisation qui peuvent étre équi-
réparties (ou non), identiques (ou non) pour
chaque individu.

Pour rendre les caractére fonctionnel a des
données discrétisées, on peut :

— interpoler (Lagrange, Hermite, etc.);



— lisser (B-spline, etc.);
— approcher (Bézier, etc.);
— décomposer (Fourier, ondelettes, etc.).

A Une interpolation
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Le prolongement des données discrétisées dans
des espaces fonctionnels est particulierement inté-
ressant dans 2 situations :

— lorsque les fonctions (ou les courbes) sont
trés régulieres ;
—Les méthodes de décomposition per-
mettent la réduction de dimension

— lorsque les données sont bruitées.
—Un débruitage peut étre réalisé par lis-
sage, par seuillage
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2 Produit scalaire

La difficulté majeure pour rendre leur carac-
tere fonctionnel aux observations discrétisées est
le passage

— des espaces de données vectorielles de di-
mension finie

— aux espaces de données fonctionnelles de di-
mension infinie

Il faut en particulier généraliser les mécanismes
de décomposition (de projection) et redéfinir le
produit scalaire.
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deux espaces de Hilbert
Dimension finie :

Exemple : RP

base orthonormée uil...uip

(uilui) =1

(uiluj) =0sii#j

& vecteurs propres de 'ACP

[= Zle(f]u’) -u!

Dimension infinie
Exemple : L.2([a, b])

Famille dénombrable génératrice de vecteurs
orthonormés u;;en

Base hilbertienne

f=Yien(flui)us

= lim 3500 (f|ui)ui

Exemple : Mécanisme d’approximation : on
tronque la série

3 DCT : Tranformation en cosi-
nus discret

La DCT exprime une suite de nombreux
points en termes de somme de fonctions cosinus
oscillan & différentes fréquences

DCT : X; = SN 2, cos(n/N(n + 1/2)k)

— Utilisée dans les compressions d’image
JPEG, MJPEG, MPEG.
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Une image est décomposée en vignette de 8 x 8
pixels. Chaque étape de gauche a droite et de haut
en bas est une augmentation de séquence par 1/2
cycle.

La donnée source (8 x 8) est transformée en
une combinaison linéaire des 64 carrés de fré-
quence.

Le premier carré correspond au niveau de gris
moyen.

Le calcul des coefficients dans cette base se fait
par produit scalaire.

4 Séries de Fourier

4.1 Rappels

Idée : Une fonction périodique C}%m peut
étre décomposée comme une somme de sinu-
soides (sinus et cosinus) de différentes fréquences.
Préalable : On peut rendre une fonction
f :]a,b] — R 1-périodique facilement.

t = (b-a)y+a f(t)
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dilatation translation

y = (t-a)/(b-a)
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4.2 Bases Hilbertiennes, série de Fou-
rier

La famille (1, /2cos(2nz), /2sin(2rz), . . .,
V2cos(2mnx), /2sin(2mnz), . .. ) est une base Hil-
bertienne de L2([0,1]) On peut donc écrire pour
toute fonction f € LZQ)([O, 1]) dans cette base :

f=2 (fl2r) @

keN

d’ou f(t) = fol f(u) - 1du
+ 3 nene V2 fol f(u) cos(2mnu)du]v/2cos(2mnt)
+ [V2 [ f(u)sin(2mnu)duly/2sin(2mnt)
ft) = ao/2 + X,>ilancos(2mnt) +
by, sin(27nt)]

avec
an = 2f01 f(u) cos(2mnu)du
by, =2 fol f(u) sin(2rnu)du
Les coefficients de la série de Fourier a,, et b,
décomposent / analysent la donnée fonctionnelle
uniquement fréquentiellement.
L’information temporelle semble étre cachée.
Ot est I'information sur le temps ? Dans le déca-
lage des sinusoides (c’est & dire les phases).

(ak, bk)
\a
Amplitude : y/a? + b7
Phase : 0 angle, avec cosf, = L et

sinbk = T

Terme de reconstruction :

ay, cos(2mkt)+by sin(2wkt) = (/a2 + b2 cos(2mkt—
Or.)

4.3 Base complexe

e2i7rnt +e*27l7rnt

En remplagant les cos(imnt) par 5

2imnt —2imnt
s (s e —e
et les sin(imnt) par “——5F——

F) =5 + 25 [*5=]
f(t) =9 > ap cos(2mkt) +by sin(27kt)
—— —

e2imkt _ o —2imkt
21

,ona:

e2imkt | o —2imkt

2
Dot f(t) = 4 + Y onez C,,e?imnt
avec Cp, = [ f(u)e™ 2™y — fréquence n.
Les ¢, sont les coefficients de Fourier com-
plexes.

On peut afficher leur module « spectre d’am-
plitude »ou leur spectre de phase.
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4.4 Comment calculer une série de
Fourier d’une fonction ?
f(t) =X ez C’n(tZeZimt a partir de la trans-

formée de Fourier de f (plongement nul & support
compact).

FO) = [g f)e 2™ at



ot f =322k (f/¥jk) ¥k avec j la fréquence
et k le temps.

¢n = f(n) avec n une fréquence entiere.

4.5 Des données spectrales aux valeurs Vit = .
discretes 21/.2/ P ( \21_/ r— k )
On va approcher numériquement les coeffi- normalisation gpdelette COntraction translation
cients de Fourier. k=0 k=1 k=2
f((N-1)/N) f(1) >
A fUN) — .

f(0)— — = o m H
discrétisation, 1 1 > -
échantillonage

avec un pas de 1/N " V2

0 IN 2N (N7l > )= W
. 172 1/21 13/2

Cp = fOl f(l.)e—QiTrnxdx ~ % Z;V:61 (%Q—inn% _ 5
cN. Cest la TFD (Transformée de Fourier Dis- j=2
créte)

On restreint ainsi le nombre de coefficients. = /4  1/4 1)2 1/2 3/4
algorithme FFT (Fast Fourier Transform) \

5.2 Analyse multirésolution

Somme de Fourier / Transformée de Fourier A B R
— analyse purement fréquentielle. ~ ' ‘
Pour rajouter une analyse temporelle, la

5 Analyse par ondelettes

Transformation de Fourier par fenétre (glissante)

a été définie. Elle permet de localiser simulta-

nément en temps et en fréquence un signal en
I’observant sur une fenétre que l'on translate. — ||

transformée de Gabon. 0 1 2 3 4

Probleme : Tout signal plus court que le
support de la fenétre est sous-localisé dans le
temps. — obtention d’une réponse localisée dans
le temps, implique I'introduction d’une échelle de { approximant de niveau 0

Niveau grossier de résolution :

grandeurs dans 'analyse (taille de la fenétre). — fonction escalier de valeurs f(—1), f(0), f(1)...

transformation en ondelettes. Niveau plus fin de résolution (deux fois plus
Idée : établir un compromis entre temps et fré- fin) :

quence. Si on utilise un signal de base analysant
— assez bien localisé temporellement

approximant de niveau 1
fonction escalier de valeurs :

— assez bien localisé fréquentiellement

— dont le spectre d’amplitude est bien localisé

Ondelettes : petites vagues oscillant a un en-
droit donné approximativement, oscillant a une
fréquence donnée approximativement.

5.1 Base intuitive

temp’s
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Y fréquence

F(=1), F(=1/2), (0), £(1/2)...

Soient v; le sous-espace de fonctions en esca-
lier sur la grille de finesse 277. La suite de sous-
espace est une Analyse Multirésolution (AMR).

Propriétés :

— Seule la fonction nulle appartient a tous les
vj 1 MNv; = {0}

— L’approximation a une échelle donnée
contient toute l'information contenue aux
résolutions plus grossieres : vg C v1 C va...

— On peut approcher avec une précision arbi-
traire n’importe quelle fonction : limwv; =

1—00
L3(R).

— On a aussi :



fev < f(xr —k) € vg,Vk € Z (translatée — 1) Pondelette mere choisie telle que {¢(z —
de k) k)}rez forme une base hilbertienne de Wy
f €evi < f(2z) € v;_1 (contractée de 2) et ¥, = 27/24(27 — k) forme une base hil-
bertienne de W;.
Notons Vi = Vi & Wy avec Wy 'espace de — On sait aussi choisir une fonction ¢ (fonc-
détails qu’il faut rajouter a un approximant tion d’échelle ou ondelette pere) dont les
de niveau 0 (vg) pour passer a un approxi- translatées forment une base hilbertienne de
mant de niveau 1. De méme V1 = V;&W;. .
Fonctions Espaces | Bases | j augmente | j diminue
Approximation | fonction échelle ¢ Vj {Dir} ik plus fin plus grossier
Détail ondelettes 1 W; {Vik}k




