
Thermochimie

Sup :

Théorème de l’énergie mécanique :
∆Em = Em(B)− Em(A) = WA→B(~fnc)
On considere un ensemble de N points maté-
riels, de baricentre G.

Em(Σ) = Ec(Σ) + Ep(Σ)

= E∗c (Σ) + 1
2

N∑
i=1

miv
2
G + Ep(Σ)

= Ec,micro + Ec,macro + Ep,micro + Ep,macro
= U(Σ) + Ec,macro + Ep,macro

avec U = Ec,micro + Ep,micro l’énergie interne
∆Em(Σ) = ∆U(Σ) + ∆Ec,macro + ∆Ep,macro =
W (~fnc) = W + Q avec W = W (~fnc,macro) et
Q = W (~fnc,micro)
D’où le 1er principe de la thermodynamique :
∆U(Σ) + ∆Ec,macro + ∆Ep,macro = W +Q

Réaction chimique en repos macroscopique
donc ∆U(Σ) = W +Q

Enthalpie H = U + pV

δW = −pextdV

Capacité thermique à volume constant

CV =
(
∂U

∂T

)
V

Capacité thermique à pression constante

Cp =
(
∂H

∂T

)
p

dU = CV dT +
(
∂U

∂V

)
T

dV = TdS − pdV

dH = CpdT +
(
∂H

∂p

)
T

dp = TdS + V dp

Pour un GP :
Relation de Mayer : Cp − CV = nR

γ = Cp
CV

donc Cv = nR

γ − 1, Cp = γnR

γ − 1
γ = 5

3 pour les GP monoatomiques

γ = 7
5 pour les GP diatomiques

Phases condensées : dU = dH = CdT

Lois de Laplace (pour une transformation adia-
batique réversible) :

dp
p

+ γ
dV
V

= 0, pV γ = Cte

(γ − 1)dV
V

+ dT
T

= 0, TV γ−1 = Cte

(1− γ)dp
p

+ γ
dT
T

= 0, T γp1−γ = Cte
On pose S = kB ln Ω la fonction entropie avec
Ω le nombre de configuration.

2ème loi de la thermodynamique : Toute trans-
formation d’un systeme thermodynamique s’ef-
fectue avec augmentation de l’entropie globale.

3ème loi de la thermodynamique ou principe
de Nernst : S −→

T→0
0

On peut alors montrer que dU = TdS − pdV
On sait de plus que dU = δQ− pdV
Donc dS = δQrev

T

On peut décomposer : dS = δSe + δSc où Se

est l’entropie échangée et Sc l’entropie créée.
Se = Q

T

Pour un GP : dS = nR

(
γ

γ − 1
dT
T
− dp

p

)
Pour un gaz de Van der Waals :
dS = Cv

dT
T

+ nR
dV

V − nb
Pour une phase condensée : dS = C

dT
T

Inegalité de Clausius-Carnot :
∑
i

Qi

Ti
≤ 0

Donc pour une machine a deux sources :
Tf < Tc
W +Qf +Qc = 0 vient du premier principe.
Qf

Tf
+ Qc

Tc
≤ 0 vient du deuxieme principe.

Le rendement (machine thermique) ou l’effi-
cacité (machine frigorifique) est la grandeur
utile sur la grandeur coûteuse.



Premier principe des écoulements permanents :
dm

[
(h2 − h1) + 1

2(c2
2 − c2

1) + g(z2 − z1)
]

=
δWu + δQ

Première loi de Joule :
(
∂U

∂V

)
T

= 0

Deuxième loi de Joule :
(
∂H

∂p

)
T

= 0

Détente de Joule et Gay-Lussac : un récipient
contenant un gaz est mis en contact par l’inter-
médiaire d’un robinet avec un récipient vide.

Pour un gaz de VdW, ∆T = − na

Cv,m

V2

V1(V1 + V2)
Pour un GP, ∆T = 0
Un gaz qui vérifie ∆T = 0 suit la première loi
de Joule.

Détente de Joule et Kelvin : un gaz s’écoule
dans une canalisation à travers une paroi po-
reuse.
Pour un GP, ∆T = 0
Un gaz qui vérifie ∆T = 0 suit la deuxième loi
de Joule.

GPM pV = nRT U(T ) = 3
2nRT,Cv,m = 3

2R

GP pV = nRT dU = Cv(T )dT,Cv,m ≥
3
2R

Cv,m = 5
2R pour un GP diatomique

gaz de VdW
(
p+ n2a

V 2

)
(V − nb) = nRT U(T, V ) = UGP (T )− n2a

V

⇒ dU = Cv(T )dT + n2a

V 2 dV
fluide incompressible V = Cte dU = Cv(T )dT

Spé :

Enthalpie libre G = H − TS
∆G = W ′ − T0S

c

Donc ∆G−W ′ ≤ 0
dG = V dp− SdT

Potentiel chimique : µi =
(
∂G

∂ni

)
T,p,nj 6=i

Potentiels chimiques et activités :
Gaz parfait : µ(p, T ) = µ◦(T ) +RT ln a, a = p

p◦

Phase condensée : µ(T ) = µ◦(T ), a = 1
Mélange de gaz parfaits : µi(p, T ) = µ◦i (T ) +RT ln ai, ai = pi

p◦

Mélange de phases condensées : µi(T ) = µ◦i (T ) +RT ln ai, ai = xi
Solvant : µsolv(T ) = µ◦solv(T ), a = 1
Soluté : µ(T ) = µ◦i,∞(T ) +RT ln ai, ai = ci

c◦

(T, p, n1...nN) sont les variables de Gibbs.
(T, p, ξ) sont les variables de De Donder.

Identité d’Euler G =
N∑
i=1

niµi

Dém : en écrivant que, avec Z une grandeur ex-
tensive, λZ(T, p, n1...nN) = Z(T, p, λn1...λnN),
et en derivant par rapport à λ, puis en posant
λ = 1.

Grâce au théorème de Schwarz, on en déduit
que(
∂µi
∂T

)
p,ni

= −S̄m,i et que
(
∂µi
∂p

)
T,ni

= V̄m,i

Relation de Gibbs-Helmholtz :(
∂

∂T

G

T

)
p,ni

= −H
T 2



Dém : partir de G = H − TS et S = −
(
∂G

∂T

)
.

Chercher a isoler H pour avoir −H
T 2

Avancement : ξ tel que ni(t) = ni(0) + νiξ

Opérateur de Lewis :

∆rZ =
N∑
i=1

νiZ̄m,i

En calculant dZ avec les variables de Gibbs, on
trouve dZ = ∆rZdξ
Avec celles de De Donder on trouve
dZ =

(
∂Z

∂ξ

)
T,p

dξ

Par identification, ∆rZ =
(
∂Z

∂ξ

)
p,T

∆Z◦ = ∆rZ
◦ξf

Dém : en calculant l’intégrale de sa dérivée
entre 0 et ξf

Pour une transformation monotherme mono-
bare, Qp ≈ ξf∆rH

◦

Enthalpie molaire standard de formation :
∆fH

◦(T )

Loi de Hess : ∆rH
◦(T ) =

N∑
i=1

νi∆fH
◦
i (T )

Lois de Kirchhoff : à p constante,
d

dT (∆rH
◦) = ∆rC

◦
p

d
dT (∆rS

◦) =
∆rC

◦
p

T
d

dT (∆rG
◦) = −∆rS

◦

Affinité A = −∆rG
Consequence : dG = −Adξ

On pose le quotient de réaction Q =
N∏
i=1

aνi
i

∆rG = ∆rG
◦ +RT lnQ

A = A◦ −RT lnQ
Constante d’équilibre K = Qeq

K◦(T ) = exp
(
−∆rG

◦

RT

)

A = RT ln K
◦

Q
Loi d’action de masse ou relation de Guldberg
et Waage :

K◦(T ) =
N∏
i=1

aνi
i,eq

Température d’inversion : Tinv telle que
∆rG

◦(Tinv) = 0
Donc K◦(Tinv) = 1

Loi de Van ’t Hoff :
d

dT (lnK◦) = ∆rH
◦

RT 2
Dém : Gibbs-Helmholtz

Systeme évoluant chimiquement uniquement :
δSc = A

T
dξ

Formule de Clapeyron : pour un changement
de phase :
dp
dT = L

T (∆V )
Facteur d’équilibre : paramètre intensif dont
la variation entraîne une évolutoin du système.
Variance : nombre minimal de paramètres in-
tensifs à fixer pour déterminer entièrement un
état d’équilibre.
∆rH

◦ > 0⇒ La réaction directe est endother-
mique.
∆rH

◦ < 0 ⇒ La réaction directe est exother-
mique.
Suite à une variation de température,
dA = ∆rH

◦

T
dT

Suite à une variation de pression,
dA = −RT

p
∆ngdp avec ∆ng =

∑
i,gaz

νi

On en déduit les principes de modération de Le
Châtelier :

– Suite à une augmentation de tempéra-
ture, le système évolue dans le sens en-
dothermique.

– Suite à une augmentation de pression, le
système évolue dans le sens de diminution
des moles gazeuses.


