type Zbar=
|f of int
|inf
|ninf

let add x y=
match (x,y) with
| (f a,f b)->f (a+b)
| (f _,ninf)->ninf
| (£ _,inf)->inf
| (ninf,inf)->failwith "forme indéterminée
| (ninf,) ->ninf
| (inf,ninf)->failwith "forme indéterminée
| (inf,_)->inf

let comp x y=

match (x,y) with

| (f a,f b)->a<b

| (f _,ninf)->false

| (f _,inf)->true

| (inf, _)->false (* pour que la condition dans 1'algo ne soit pas
vérifiée quand on compare deux infinis *)

| (ninf,) ->true

let bellman ford g s a= (* g étant le graphe : une matrice contenant la
longueur de chaque arc, s la source, de type int, et a l'arrivée, de
type int *)

let n=vect length g in

let d=make vect n inf (* vecteur des majorants des distances pour
chaque sommet *)

and p=make vect n (-1) (* vecteur des prédécesseurs de chaque

sommet, -1 désigne NIL *)
in d. (s)<-f 0;
/" for i=1 to n-1 do)

for u=0 to n-1 do
for v=0 to n-1 do
let t=add d. (u) g.(u).(v) in
if comp t d.(v) (* vrai si plus petit *)
then
begin
d. (v)<-t;
p- (v)<-u
end
done "
done Relachement
done; -
for u=0 to n-1 do
for v=0 to n-1 do
let t=add d. (u) g.(u).(v) in
if comp t d. (v)
then failwith "il y a un cycle de poids négatif"
done s Ji+ 4
done Test de validité
let rec aux 1= X i X L)
if nd 1=s Reconstitution du chemin choisi
then 1
else let t=p.(hd 1) in
if t<> -1
then aux (t::1)
else failwith "aucun chemin"

_ in aux [a] J

N

N

