
type Zbar=
 |f of int
 |inf
 |ninf
;;

let add x y=
 match (x,y) with
 |(f a,f b)->f (a+b)
 |(f _,ninf)->ninf
 |(f _,inf)->inf
 |(ninf,inf)->failwith "forme indéterminée"
 |(ninf,_)->ninf
 |(inf,ninf)->failwith "forme indéterminée"
 |(inf,_)->inf
;;

let comp x y=
 match (x,y) with
 |(f a,f b)->a<b
 |(f _,ninf)->false
 |(f _,inf)->true
 |(inf,_)->false (* pour que la condition dans l'algo ne soit pas
vérifiée quand on compare deux infinis *)
 |(ninf,_)->true
;;

let bellman_ford g s a= (* g étant le graphe : une matrice contenant la
longueur de chaque arc, s la source, de type int, et a l'arrivée, de
type int *)
 let n=vect_length g in
 let d=make_vect n inf (* vecteur des majorants des distances pour
chaque sommet *)
 and p=make_vect n (-1) (* vecteur des prédécesseurs de chaque
sommet, -1 désigne NIL *)
 in d.(s)<-f 0;
 for i=1 to n-1 do
 for u=0 to n-1 do
 for v=0 to n-1 do
 let t=add d.(u) g.(u).(v) in
 if comp t d.(v) (* vrai si plus petit *)
 then
 begin
 d.(v)<-t;
 p.(v)<-u
 end
 done
 done
 done;
 for u=0 to n-1 do
 for v=0 to n-1 do
 let t=add d.(u) g.(u).(v) in
 if comp t d.(v)
 then failwith "il y a un cycle de poids négatif"
 done
 done;
 let rec aux l=
 if hd l=s
 then l
 else let t=p.(hd l) in
 if t<> -1
 then aux (t::l)
 else failwith "aucun chemin"
 in aux [a]
;;

Relâchement

Test de validité
Reconstitution du chemin choisi

