
 and etape6 ()=
 let ind=trouver_indice c t.(2* !i) in
 (
 match tcomp.(2* !i+1) with
 |0->t.(2* !i+1)<-c.((ind+1) mod n);
 tvois:=c.((ind+2) mod n)
 |_->t.(2* !i+1)<-c.((ind+n-1) mod n);
 tvois:=c.((ind+n-2) mod n)
);
 tcomp.(2* !i+1)<-tcomp.(2* !i+1)+1;

 if not (dejapris t (2* !i+1)) & est_un_tour c nouvc t !i n
(* La fonction est_un_tour en profite pour définir nouvc le nouveau chemin *)
 then
 if est_mieux d !i G t
 then
 begin
 copier nouvc c;
 etape12 ()
 end
 else
 begin
 tcomp.(2* !i+2)<-0;
 etape7 ()
 end
 else
 if tcomp.(2* !i+1)=2
 then etape8 ()
 else etape6 ()
 and etape7 ()=
 t.(2* !i+2)<-tcomp.(2* !i+2);
 tcomp.(2* !i+2)<-tcomp.(2* !i+2)+1;
 if not (dejapris t (2* !i+2)) & t.(2* !i+2)<> !tvois & !G-.d.(t.(2*
!i+1)).(t.(2* !i+2))>0.
 then
 begin
 tcomp.(2* !i+3)<-0;
 etape5 ()
 end
 else
 if tcomp.(2* !i+2)=n
 then etape8 ()
 else etape7 ()
 and etape8 ()=
 if tcomp.(4)=n
 then etape9 ()
 else
 begin
 i:=1;
 etape7 ()
 end
 and etape9 ()=
 if tcomp.(3)=2
 then etape10 ()
 else
 begin
 i:=1;
 etape6 ()
 end

 and etape10 ()=
 if tcomp.(2)=n
 then etape11 ()
 else
 begin
 i:=0;
 etape4 ()
 end
 and etape11 ()=
 if tcomp.(1)=2
 then etape12 ()
 else
 begin
 i:=0;
 etape3 ()
 end
 and etape12 ()=
 if tcomp.(0)=n
 then c (* C'est la fin de l'algo *)
 else etape2 ()
 in etape2 ()
;;

2/2

Choix d'un arc
du chemin initial

Test : le chemin obtenu est-il un cycle passant par tous les sommets ?

Si le nouveau chemin
est meilleur, on le garde.

Choix d'un arc pour le nouveau chemin

Retours en arrière

